TOPICS		Content	Guidance	R	Α	G
Algebra & Functions	2.1	Index laws	$\sqrt{2}$ is irrational			
	2.2	surds	including rationalising the denominator			
	2.3	Quadratic functions & their graphs	f(x) notation			
		Discriminant	including conditions for number of real roots			
		Completing the square	including coef of x not equal to 1			
		solution of quadratic equations	factorising			
			formula			
			completing the square			
		solving quadratic equations in a function of the unknown	powers of <i>x</i> , trig functions, e & log functions (where you can put it equal to a different letter to make a normal quadratic)			
	2.4	simultaneous equations	elimination or substitution			
			including one linear & one quadratic			
	2.5	linear & quadratic inequalities & intrerpret graphically	including $px^2 + qx + r > ax + b$			
			means where the curve is above the line etc			
		including inequalities with brackets & fractions	eg need to be rearranged first into solvable form			
		express solutions through correct use of 'and' & 'or'	ie set notation			
		graphs of inequalities	shading & use of dotted & solid lines to find solution set			

	2.6	manipulating polynomials , algebraic division & use of factor theorem	including factorising a cubic		
		simplify rational expressions by factorising & cancelling & algebraic division	ie algebraic fractions		
	2.7	Graphs of functions; sketch curves	cubic & quartic functions		
		modulus functions	sketch modulus functions & use to solve equations & inequalities		
		$\frac{a}{x} \otimes \frac{a}{x^2}$	asymptotes		
		interpret solutions of equations in relation to graphs & points of in			
		proprtional relationships & their graphs	$y \propto x \text{ or } \frac{1}{x} \text{ or } = \text{kx etc}$		
	2.8	composite funtions, inverse functions & their graphs	function is one-to-one or many-to-one, f: Idomain & range		
	2.9	transforming graphs & sketching	apply a combination of transformations to any graphs on the syllabus (quadratic, cubic, sin, tan, cos, $e^x \& a^x$)		
	.2.10	partial fractions	& apply to integration, differentiation, & series expansion		
	2.11	modelling	eg trig functions - tides/hours of sunlight, reciprocal for inverse proportion, exponential for growth & decay		
Coordinate Geometry	3.1	straight line equations			
		gradient conditions of parallel & perpendicular lines			
		straight lines in context			
	3.2	equation of a circle	find raduis & centre (in either form)		
		complete the square to find centre & radius			
		circle properties:			
		angle in a semicircle	find equation of circumcircle given 3 points		
		radius bisects chord at right angles			
		tangent is perpendicular to radius	equation of a tangent using this		
	3.3	parametric equations & conversion between Cartesian & parametric forms	pay attention to the domain of t		
	3.4	use parametrics in modelling	inclusing constant velocity as in kinematics		

Sequences & Series	4.1	binomial for positive integer power, n!	pascal's triangle, notations $\binom{n}{r}$ & nC_r		
		any rational power & valid for Irl<1	may be used with partial fractions & mat be asked about validity of expansion		
	4.2	sequences including an nth term rule, increasing, decreasing & periodic functions	eg: $U_n = \frac{1}{3n+1}$ is decreasing as $U_{n+1} < U_n$ for all n $U_n = 2^n$ is increasing as $U_{n+1} > U_n$ etc		
	4.3	sigma notation	know that $\sum_{1}^{n} 1 = n$		
	4.4	arithmetic sequences & series	proof of sum formula, including sum of first <i>n</i> natural numbers		
	4.5	geometric sequences & series	proof of sum formula, use of logs, sum to infinity of convergent series & condition Irl<1		
	4.6	use in modelling	eg savings scheme (percentage increase forms geometric series)		
Trigonometry	5.1	sin, cos, tan	unit circle		
		sine & cosine rules area of triangle radians, including arc length & area of sector	including ambiguous case of sine rule		
	5.2	small angle approximations	$\frac{\cos 3x - 1}{x \sin 4x} \approx -\frac{9}{8}$		
	5.3	trig graphs (symmetry & periodicy)			
		exact values of sin/cos/tan of $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$			
	5.4	sec cosec & cot, arcsin arccos & arctan; their graphs, ranges & domains	angles in degrees & radians		
	5.5	$\tan\theta = \frac{\sin\theta}{\cos\theta}$	use to solve equations & prove further identities in both degrees & radians		
		$sin^2\theta + cos^2\theta$ =1, $1 + tan^2\theta = sec^2\theta$, $1 + cot^2\theta = cosec^2\theta$			

	5.6	double angle formulae & sin/tan/cos (A+B) &	apply to half angles		
		geometric proofs of these			
		$r\sin(\theta \pm \alpha) \& r\cos(\theta \pm \alpha)$	solve equations like $a\cos\theta + b\sin\theta = c$		
	5.7	solve trig equations including quadratics & multiples of the angle			
	5.8	proofs of identities			
	5.9	solve problems in context including vectors, kinematics & forces			
Exponentials & logs	6.1	know & use a^x , e^x	& their graphs. Understand difference in shape between $a < 1 \& a > 1$		
	6.2	know that the gradient of e^{kx} is ke^{kx}	When the rate of change is proportional to <i>y</i> , an exponential model should be used		
	6.3	know $\log_a x$ is the inverse of a^x			
		ln x	solve equations like $e^{ax+b} = p \& \ln(ax+b) = q$		
	6.4	log laws			
	6.5	solve equations in the form $a^{\chi}=b$			
	6.6	reduce exponentials to linear relations	plot log y against log x & log y against x . & find gradient & intercept of line		
	6.7	growth & decay	know that "initial" means t=0		
Differentiation	7.1	understand the derivative as the gradient of the tangent at a general point (x,y), as a limit & as a rate of change			
		sketch the gradient function	given y=f(x), sketch y=f'(x) . Can also relate to speed & acceleration		
		second derivatives			
		differentiation from first principles	for powers of x & for sin & cos (use formula)		
		convex & concave sections of curve & points of inflection	know that stationary points are where f'(x)=0, that point of inflection is f"(x) changes sign & use second derivatives for nature of maximum &		
	7 2	differentiate r ⁿ	minimum points nut in index form first if necessary	┢──┦	
	1.2		put in much form mat in necessary	1	1

i	· · · · · · · · · · · · · · · · · · ·			 	
		differentiate a^x , e^x , $\sin kx$ $\cos kx$, $\tan kx$, $\ln x$			
	7.3	apply differentiation to to find gradients, tangents & normals		 	
		max & min & points of inflection	max & min problems in context		
		increasing & decreasing functions	apply to curve sketching		
	7.4	product , quotient & chain rules, including connected rates of change & inverse functions	cosec, cotan & sec		
			use $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \& \frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$		
	7.5	inplicit & parametric	equations of tangents & normals of curves given parametrically or implicitly		
	7.6	construct simple differential equations in pure maths & in context	info given may include direct proportion		
Integration	8.1	integration as reverse of differentiation	constant of integration		
	8.2	integrate x^n , e^{kx} , $\frac{1}{x}$, $\sin x$, $\cos x$	put in index form first if necessary		
			given f'(x) and a point on the curve, find an equation of the curve		
			include other standard trig functions & use identities to integrate $sin^2 \ cos^2 \ tan^2$		
	8.3	areas under curves			
		areas between 2 curves			
	8.4	integration as a limit	$\int_{a}^{b} f(x)dx = \lim_{\delta x \to 0} \sum_{x=a}^{b} f(x)\delta x$		
	8.5	integration by substitution	includes finding suitable substitution		
		integration by parts			
		inverse chain rule			
	8.6	integration using partial fractioning			
	8.7	differential equations	may need to sketch family of curves		

	8.8	interpret solutions of differential equations in	includes links to kinematics (variable acceleration) & limitations on the		
		context	model		
	0.1	find roots of f(x)=0 by considering changes of	know that function has to be continuous		
Numerical methods	9.1	sign			
		understand how it can fail			
	9.2	iteration	cobweb & staircase		
	9.3	Newton-Raphson	understand how it works geometrically; fails if near turning points		
	9.4	trapezium rule	use a sketch to deterime over/under-estimate		
			$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}$		