Equations

Force $=$ Spring constant \times Extension
Elastic Energy $=\frac{1}{2} \times$ Spring constant \times Extension 2

Prior Knowledge:

- Main forces acting on objects
- Describing motion
- Energy Stores
Speed and Velocity
speed $=\frac{\text { distance }}{\text { time }} \quad$ velocity $=\frac{\text { displacement }}{\text { time }}$

Both speed and velocity are measured in meters per second (m / s)

Newton's $1^{\text {st }}$ Law

An object at rest (or constant speed) will remain at rest (or constant speed) unless acted upon by an external

Acceleration
acceleration $=\frac{\text { change in velocity }}{\text { time }}$

Acceleration is measured in meters per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ A positive acceleration will increase the velocity. A negative acceleration (deceleration) will decrease the velocity.

Newton's 2 $^{\text {nd }}$ Law

Force $=$ mass x acceleration

Moments

Work $=$ Force x Distance \perp
A moment is a turning force
Work is measured in Joules (J)
Force is measured in Newtons (N)
Distance is measured perpendicular to the force and is given the unit meters (m)

Gravity

$$
\text { Weight }=\text { mass } x \text { gravity }
$$

Gravity is a constant downward force and is always 10N/kg
Mass is measured in kilograms (kg) Weight is measured in Newtons (N)

Newton's 3 ${ }^{\text {rd }}$ Law

Every action has an equal and opposite reaction

Resultant Force

$$
\text { Resultant force }=\text { Force } 1-\text { Force } 2
$$

Resultant force is the sum of all the forces acting on an object, it includes the direction of the object's motion

Momentum

$$
\text { Momentum }=\text { mass } x \text { velocity }
$$

Momentum is an object in motion, it includes the direction of the object's motion
Mass is measured in kilograms (kg) Velocity is measured in meters/second (m / s)

•Ramps

